On the importance of specifying explicit response functions in preference, emotion and behavior measurement
Yvonnick Noel
LP3C, University Rennes 2, Brittany, France
17th Sensometrics Conference, Paris, June 4th, 2024
|
http://yvonnick.noel.free.fr/papiers/respfunc
• • • •
• • •
•
• • • •
• • •
•
Noel, Y. (2015, September). Five factors but one dimension: An alternative view at the Big Five Factor model of personality. International Conference of the AFERTP (Association Francophone d'Etude et de Recherche sur les Troubles de la Personnalité), Tours; université François Rabelais.
• • • •
• • •
•
Fan, J., Guo, J., & Zheng, S. (2020). Estimating Number of Factors by Adjusted Eigenvalues Thresholding. Journal of the American Statistical Association, 117 (538), 852–861.
• • • •
• • •
•
$$E(X)=\alpha(\theta-\delta)$$
where $\theta$ and $\delta$ are unknown person (state or attitude) and item (threshold or mean) parameters, and $\alpha$ a scale (or loading) parameter.
• • • •
• • •
•
Noel, Y., & Dauvier, B. (2007). A Beta Item Response Model for Continuous Bounded Responses. Applied Psychological Measurement, 31(1), 47–73.
Plot of principal component vectors as a function of the true $\theta$ values, from both the observed data (dots) and the true expected responses functions (lines).
Dony, R. (2000). Karhunen-Loève transform. In K. R. Rao & P. Yip (Eds.), The transform and data compression handbook. Boca Raton, FL, USA: CRC Press, Inc.
• • • •
• • •
•
• • • •
• • •
•
• • • •
• • •
•
\[\begin{cases} \frac{dx}{d\theta}=\alpha x(\theta)\color{#0587c4}{-\gamma y(\theta-\delta)}\\ \frac{dy}{d\theta}=\beta y(\theta) \end{cases}\] with $\alpha$, $\beta$ et $\gamma$ positive factors, and $\delta$ a shifting parameter.
$$ x(\theta)=\frac{\exp\left[\alpha(\theta-\delta)+\lambda\right]}{\color{#0587c4}{\left\{ \exp[\beta(\theta-\delta)]+1\right\} ^{\frac{\gamma}{\beta}}}+\exp\left[\alpha(\theta-\delta)+\lambda\right]} $$
Noël, Y. (2017). Item Response Models for Continuous Bounded Responses, with applications in the analysis of emotion, personality and behavior change. Senior habilitation thesis, University of Brittany, Rennes 2, France.
$$\begin{cases} m_{ij}&=\exp\left[\alpha_j(\theta_i-\delta_j)+\lambda_j\right] \\ n_{ij}&=\left\{ \exp\left[\beta_j(\theta_i-\delta_j)\right]+1\right\}^{\frac{\gamma_j}{\beta_j}} \end{cases} $$
$$ E(X_{ij}|\theta_{i})=\frac{m_{ij}}{m_{ij}+n_{ij}}=\frac{\exp\left[\alpha_{j}(\theta_{i}-\delta_{j})+\lambda_{j}\right]}{\left\{ \exp\left[\beta_{j}(\theta_{i}-\delta_{j})\right]+1\right\}^{\frac{\gamma_{j}}{\beta_{j}}}+\exp\left[\alpha_{j}(\theta_{i}-\delta_{j})+\lambda\right]} $$
\[ E(X_{ij}|\theta_{i})=\frac{\exp\left(\theta_{i}-\delta_{j}+\lambda_{j}\right)}{1+\exp\left(\theta_{i}-\delta_{j}+\lambda_{j}\right)} \]
(1) Noel, Y. and Dauvier, B. (2007). A beta item response model for continuous bounded responses, Applied Psychological Measurement, 31(1), 47-73.
(1) Noel, Y. and Dauvier, B. (2007). A beta item response model for continuous bounded responses, Applied Psychological Measurement, 31(1), 47-73.
(2) Noel, Y. (2014). A beta unfolding model for continuous bounded responses, Psychometrika, 79(4), 647-674.
• • • •
• • •
•
Noel, Y. (2014). A beta unfolding model for continuous bounded responses, Psychometrika, 79(4), 647-674.
• • • •
• • •
•
I. Precontemplation (non motivation) |
II. Contemplation (expect change within 6mo) |
III. Preparation (expect change within 30d) |
IV. Action (quit, last 6mo) |
V. Maintenance (quit, more than 6mo ago) |
---|---|---|---|---|
01 - Social liberation (Perception of non-smokers' behavior) |
||||
02 - Environmental reevaluation (reassess impact on environment) |
||||
03 - Emotional relief (express negative feelings) |
||||
04 - Consciousness raising (taking information on quitting smoking) |
||||
05 - Sef-reevaluation (reassess one's behavior and values) |
||||
06 - Self-liberation (Decision, will power) |
||||
07 - Stimulus control (Remove any cue or incentive) |
||||
08 - Helping relationships (Rely on significant others) |
||||
09 - Reinforcement management (Find alternative sources of satisfaction) |
||||
10 - Counter-conditioning (Find replacements and substitutes) |
(DiClemente and Prochaska, 1982; DiClemente and Prochaska, 1985; DiClemente et al., 1991; Prochaska et al., 1988)
Noel, Y. (1999). Recovering Latent Unimodal Patterns of Change by Unfolding Analysis : Application to Smoking Cessation. Psychological Methods, 4(2), 173-191.
Noël, Y., Molimard, R. & Martin, C. (2004, October). A longitudinal study in Schools of Nursing. 19th Meeting of the French Tobbacology Society, Paris.
Note: Figures are median locations by stage.
Thank you for your attention.
yvonnick.noel@univ-rennes2.fr
• • • •
• • •
•