A differential equation framework for the derivation of item response functions
![]() |
Yvonnick Noël
LP3C, Rennes 2 University, France
International Meeting of the Psychometric Society, Prague, July 18th 2024
|
|
http://yvonnick.noel.free.fr/papiers/imps2024
•
•
•
•
•
•
•
•
•
Noel, Y. (2022, July). A dynamical framework for the derivation of cumulative response models. 87th International Meeting of the Psychometric Society, Bologna, Italy.
Noel, Y. (2022, July). A dynamical framework for the derivation of cumulative response models. 87th International Meeting of the Psychometric Society, Bologna, Italy.
•
•
•
$$\begin{cases} x_1(\theta)=\frac{\exp\left[\alpha\theta+C_1\right]}{\color{#0587c4}{\left\{ \exp\left[\beta(\theta-\delta)\right]+1\right\}^{\frac{\gamma}{\beta}}}+\exp\left[\alpha\theta+C_1\right]}\\ x_2(\theta)=\frac{\exp\left[\beta\theta+C_2\right]}{1+\exp\left[\beta\theta+C_2\right]} \end{cases}$$
$$ x(\theta)=\frac{\exp\left[\alpha(\theta-\delta)+\lambda\right]}{\color{#0587c4}{\left\{ \exp[\beta(\theta-\delta)]+1\right\} ^{\frac{\gamma}{\beta}}}+\exp\left[\alpha(\theta-\delta)+\lambda\right]} $$
Noel, Y. (2023, July). A Beta Asymmetric Unfolding Model for Continuous Bounded Responses. 56th Annual Meeting of the Society for Mathematical Psychology (MathPsych 2023), Amsterdam.
•
•
•
•
•
•
Thank you for your attention.
yvonnick.noel@univ-rennes2.fr
•
•
•