A Beta Asymmetric Unfolding Model for Continuous Bounded Responses
Application to the Modeling of Behavior Change Dynamics
LP3C, University of Brittany, Rennes 2, France
56th Annual Meeting of the Society for Mathematical Psychology, Amsterdam, July 20th, 2023
http://yvonnick.noel.free.fr/papiers/baum
•
•
•
•
•
•
\[\begin{cases} \frac{dx}{d\theta}=\alpha x(\theta)\color{#0587c4}{-\gamma y(\theta-\delta)}\\ \frac{dy}{d\theta}=\beta y(\theta) \end{cases}\] with $\alpha$, $\beta$ et $\gamma$ positive factors, and $\delta$ a shifting parameter.
•
•
•
$$\begin{cases} x(\theta)=\frac{\exp\left[\alpha\theta+C_1\right]}{\color{#0587c4}{\left\{ \exp\left[\beta(\theta-\delta)\right]+1\right\}^{\frac{\gamma}{\beta}}}+\exp\left[\alpha\theta+C_1\right]}\\ y(\theta)=\frac{\exp\left[\beta\theta+C_2\right]}{1+\exp\left[\beta\theta+C_2\right]} \end{cases}$$
Noël, Y. (2017). Item Response Models for Continuous Bounded Responses, with applications in the analysis of emotion, personality and behavior change. Senior habilitation thesis, University of Brittany, Rennes 2, France.
$$ x(\theta)=\frac{\exp\left[\alpha(\theta-\delta)+\lambda\right]}{\color{#0587c4}{\left\{ \exp[\beta(\theta-\delta)]+1\right\} ^{\frac{\gamma}{\beta}}}+\exp\left[\alpha(\theta-\delta)+\lambda\right]} $$
•
•
•
$$\begin{cases} m_{ij}&=\exp\left[\alpha_j(\theta_i-\delta_j)+\lambda_j\right] \\ n_{ij}&=\left\{ \exp\left[\beta_j(\theta_i-\delta_j)\right]+1\right\}^{\frac{\gamma_j}{\beta_j}} \end{cases} $$
$$ E(X_{ij}|\theta_{i})=\frac{m_{ij}}{m_{ij}+n_{ij}}=\frac{\exp\left[\alpha_{j}(\theta_{i}-\delta_{j})+\lambda_{j}\right]}{\left\{ \exp\left[\beta_{j}(\theta_{i}-\delta_{j})\right]+1\right\}^{\frac{\gamma_{j}}{\beta_{j}}}+\exp\left[\alpha_{j}(\theta_{i}-\delta_{j})+\lambda\right]} $$
\[ E(X_{ij}|\theta_{i})=\frac{\exp\left(\theta_{i}-\delta_{j}+\lambda_{j}\right)}{1+\exp\left(\theta_{i}-\delta_{j}+\lambda_{j}\right)} \]
(1) Noel, Y. and Dauvier, B. (2007). A beta item response model for continuous bounded responses, Applied Psychological Measurement, 31(1), 47-73.
(1) Noel, Y. and Dauvier, B. (2007). A beta item response model for continuous bounded responses, Applied Psychological Measurement, 31(1), 47-73.
(2) Noel, Y. (2014). A beta unfolding model for continuous bounded responses, Psychometrika, 79(4), 647-674.
•
•
•
\[ V(X;m,n)=\frac{mn}{(m+n)^{2}(m+n+1)}=\mu(1-\mu)\left[\frac{1}{\color{#0587c4}{m+n}+1}\right] \]
\[ \begin{cases} m'(\theta)=\color{#0587c4}{w(\theta)}\exp\left[\alpha(\theta-\delta)+\lambda\right]\\ n'(\theta)=\color{#0587c4}{w(\theta)}\left\{ \exp[\beta(\theta-\delta)]+1\right\}^{\frac{\gamma}{\beta}} \end{cases}\]
with the variance inflating function ($v>0$):\[ w(\theta)=\exp\left[-v(\theta-\delta)+\tau\right] \]
•
•
•
I. Precontemplation (non motivation) |
II. Contemplation (expect change within 6mo) |
III. Preparation (expect change within 30d) |
IV. Action (quit, last 6mo) |
V. Maintenance (quit, more than 6mo ago) |
---|---|---|---|---|
01 - Social liberation (Perception of non-smokers' behavior) |
||||
02 - Environmental reevaluation (reassess impact on environment) |
||||
03 - Emotional relief (express negative feelings) |
||||
04 - Consciousness raising (taking information on quitting smoking) |
||||
05 - Sef-reevaluation (reassess one's behavior and values) |
||||
06 - Self-liberation (Decision, will power) |
||||
07 - Stimulus control (Remove any cue or incentive) |
||||
08 - Helping relationships (Rely on significant others) |
||||
09 - Reinforcement management (Find alternative sources of satisfaction) |
||||
10 - Counter-conditioning (Find replacements and substitutes) |
(DiClemente and Prochaska, 1982; DiClemente and Prochaska, 1985; DiClemente et al., 1991; Prochaska et al., 1988)
•
•
•
Noel, Y. (1999). Recovering Latent Unimodal Patterns of Change by Unfolding Analysis : Application to Smoking Cessation. Psychological Methods, 4(2), 173-191.
Noël, Y., Molimard, R. & Martin, C. (2004, October). A longitudinal study in Schools of Nursing. 19th Meeting of the French Tobbacology Society, Paris.
Note: Figures are median locations by stage.
Thank you for your attention.
yvonnick.noel@univ-rennes2.fr
•
•
•
Noel, Y. (2022, July). A dynamical framework for the derivation of cumulative response models. 87th International Meeting of the Psychometric Society, Bologna, Italy.
Noel, Y. (2022, July). A dynamical framework for the derivation of cumulative response models. 87th International Meeting of the Psychometric Society, Bologna, Italy.
\[ v_{\gamma}=\left(\frac{\alpha+\beta}{2}\right)\left(\frac{\gamma+2}{4}\right) \] will fit both cases while interpolating between them.